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ABSTRACT 

The data-driven machine learning (ML) method is developed to rapidly 
evaluate the thermal and flow fields of a ground vehicle and its neighboring 
environment at various conditions. The artificial neural network (ANN) is 
implemented as the ML model to evaluate the fields, while achieving equivalent 
accuracy as the CFD simulations. In order for ANN to precisely map a relationship 
between the simulation parameters and the solution field, the proper orthogonal 
decomposition (POD) technique is applied to reduce the dimension of the field 
variables. Consequently, the compressed data (i.e. modal coefficients) is selected 
as the target for the ANN. Once trained, POD reconstruction is performed on the 
ANN predicted modal coefficients to recover the CFD solution. The developed 
framework is tested at diverse sample sites, and the maximum mean absolute errors 
are found to be 0.41 K and 0.019 m/s for thermal and flow simulations, respectively, 
verifying the outstanding prediction performance.  
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1. INTRODUCTION 

Computational fluid dynamics (CFD) is a great 
tool for simulating heat transfer and turbulent flow 
to predict accurate thermal signatures of vehicles. 
Despite its high fidelity and accuracy, the 
computational costs can be prohibitive for various 
DoD applications, such as real-time simulation, 
thermal control development, and design 
optimization. As a consequence, machine learning 

(ML) for data dimension reduction and multi-
physics field prediction has garnered significant 
research interest recently.  

The most popular data dimension reduction 
methods are proper orthogonal decomposition 
(POD) and deep autoencoder (DAE). The POD 
method finds a set of orthogonal basis for 
representing a data set in an L2-optimal sense to 
find the lower-dimensional approximations [1]. 
POD-based dimension reduction applications can 
be found in numerous literatures including miscible  
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viscous fingering [2], mode-locked lasers [3], 
hyperelasticity and viscoelasticity material 
behaviors [4], bearingless motor [5], and fluid 
transport [6]. DAE is an unsupervised learning 
technique for artificial neural networks (ANNs) 
that reduces data dimensions by learning efficient 
data representations in the underlying nonlinear 
manifold. DAE is comprised of two parts: encoder 
and decoder, which are responsible for 
compression and reconstruction, respectively. 
Similar to the POD method, DAE has been used 
extensively in various engineering applications 
such as, induction motor [7], cyber security [8], 
power transmission line [9], wind turbine [10], 
bearing [11], and building energy [12]. Both 
methods have their own merits and disadvantages. 
POD is L2-optimal and autonomous method and is 
easy to compute. However, it is a linear 
transformation, which requires a large number of 
modes to explain data variance. Otherwise, 
significant information loss could be induced due 
to POD modal truncation. On the other hand, DAE 
suffers from difficulties in implementation since it 
often requires large amount of training data and 
hyperparameter optimization. Therefore, either of 
the method must be carefully selected to meet the 
purpose of the application. 

Reducing the data dimension offers a huge 
advantage in ML and data-driven modeling since it 
becomes easier to learn the relation between the 
data in the reduced subspace or manifold by 
removing unnecessary information that hinders 
model training, and alleviate the demanding 
requirement of data for training. Wang et al. [13] 
proposed a deep learning-based reduced order 
model (ROM) method that uses DAE to reduce the 
dimension of spatiotemporal data and then model 
the low-dimensional representation by either a 
linear autoregressive model or a nonlinear random 
vector functional-link (RVFL). Chen and Li [14] 
used DAE to extract the multisensor features to 
train the fault classification model by fine tuning 
the identified encoder weights. Wang et al. [15] 
presented a ROM method that combines the deep 

learning and the POD technique for transient ocean 
gyre and flow past a cylinder. The key idea was to 
use POD to reduce the data of field variables, such 
as velocity and pressure into the POD modal 
subspace, and then a long short-term memory 
network was developed to predict the modal 
coordinates at the next time step using those at the 
previous time steps. 

Based on the existing efforts on dimension 
reduction and ML modeling, we propose a data-
driven method to rapidly evaluate thermofluidic 
fields of a ground vehicle and its surroundings at 
various simulation conditions. The ML model, 
specifically ANN, can be trained to run rapidly 
while achieving almost equivalent accuracy as the 
CFD. To address the challenge associated with the 
large CFD meshes that preclude the ANN from 
learning the relationship between field variables 
and simulation parameters, a POD data reduction 
technique is implemented. POD modes are able to 
capture coherent physics underlying CFD 
simulation data and significantly reduce the 
dimension of CFD data. Thus, the ANN is able to 
predict the modal coefficients in the reduced 
domain. The predicted modal coefficients and the 
POD modes then can be used to reconstruct the 
CFD solution in the full computational domain. It 
is worth mentioning that POD is selected over DAE 
for two reasons: First, POD is an L2-optimal 
method and can take in the input data of an 
extremely high dimensions (e.g., ~ >106 [16]), 
which, however, is intractable for DAE. Second, 
CFD data generation is computationally demanding 
and its availability can be limited. POD essentially 
reduces the data dimension through either singular 
value decomposition or eigenvalue decomposition, 
which is not a learning-based method, and hence, 
more suited for such a circumstance.  

There are several advantages of the proposed 
method to combine the POD and ANN. First, 
through POD, the input-output mapping 
relationship is established between the simulation 
parameters and the modal coefficient (instead of the 
full field variables), and is much easier to model. 
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As a result, the ANN-ROM can be trained with 
salient prediction accuracy and generality. Second, 
a lower dimension of outputs (i.e., modal 
coefficients) allows a concise ANN structure, 
reducing both the training and the inference time. 
Third, because of these two features, the training 
process is more robust to training failures or 
complications, such as overfitting and bias issues. 
Last, since there are a smaller number of weight 
parameters to train, the volume of the training data 
and corresponding CFD simulations can be 
reduced, and the computational load and resource 
usage can be alleviated.  

In addition to the proposed ANN-ROM method, 
heterogeneous computing platform that 
incorporates both CPU and GPU is also developed 
for parallelized inference to enhance prediction 
throughput and for field applications.  

The proposed research will enable ultrafast and 
accurate flow and thermal modeling and 
simulation, and enhance DoD’s capabilities in 
concept evaluation, optimization design, and 
signature analysis and control of weapon systems.  

The contributions of this research is summarized 
as follows: (1) the thermal analysis framework is 
integrated within one fully coupled CFD solver to 
generate required data for model training; (2) the 
POD, a mathematically rigorous data reduction 
technique, is applied to reduce the dimension of 
CFD data; (3) the ANN is trained to predict the 
modal coefficients in the reduced domain; and (4) 
the efficient heterogenous computing that utilizes 

both CPU and GPU is implemented for a rapid and 
large scale prediction.  

 
2. METHODOLOGY 

The detailed flowchart of ML model generation 
and prediction is depicted in Figure 1. At the model 
generation stage as shown in Figure 1a, samples are 
first created with the input parameter space, where 
CFD simulation is conducted to generate data for 
model training. For this work, the boundary 
conditions of the CFD analysis are selected as the 
input parameters, and the goal is to find the data-
driven model that approximates the CFD 
simulation and is parameterized by the same 
boundary conditions used in the CFD model. The 
size of the CFD data is dictated by the number of 
cells in the CFD model. The solution field of CFD 
at one sample/simulation condition is vectorized 
into a single column vector y, where the 
components of a vector represent the field variable 
such as the temperature and velocity at a cell. The 
solution fields of all samples are horizontally 
concatenated in a matrix form, viz., a snapshot 
matrix, and thus, the rows and columns correspond 
to the field variables at CFD mesh cells and the 
solution snapshots of different samples (simulation 
parameters). In order to perform accurate CFD 
simulations, densely structured mesh is required, 
resulting in a large number of cells. In other words, 
often the CFD simulation yield a massive number 
of output parameters (corresponding to the solution 
variables at all mesh cells), which makes ML 
models difficult to predict, especially with a small 

  
(a) (b) 
Figure 1: Flowchart of (a) ANN training, and (b) CFD prediction 
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amount of data. To circumvent this issue, POD is 
directly performed on the solution snapshot matrix 
to find the modal representations of the output 
parameters denoted as α with a much lower 
dimension in the reduced domain than y. The ANN 
model is trained to establish a mapping between the 
CFD boundary conditions, viz, simulation 
parameters and α, the modal representation of the 
solution field. 

The prediction stage is shown in Figure 1b. Once 
trained, the ANN can be used to predict α for 
different simulation parameters (i.e., boundary 
conditions). To increase the throughput, ANN 
prediction is performed on GPU. All the query 
samples and the ANN models are uploaded to the 
GPU memory. Once all the necessary data is 
transferred, modal coefficients are estimated 
concurrently. One caveat is that if the query size 
exceeds the capacity of GPU, not all the ANN 
inference could be conducted simultaneously. The 
predicted modal coefficients are transferred back to 
CPU as a matrix form. Within CPU, POD 
reconstruction is performed to actually predict the 
CFD solution fields. Once all the values of y is 
reconstructed, CFD solution is plotted by matching 
the output components to the corresponding cells. 
For ANN simulation in this research, a workstation 
with Intel(R) Core(TM) i9-9820X CPU @ 3.30 
GHz and NVIDIA GeForce RTX 2080 Ti GPU is 
used. The details of POD and ANN applied in this 
work are elucidated in the following subsections.  

 
2.1. Proper Orthogonal Decomposition 

POD is a method to extract the dominant modes 
(i.e., basis vectors) and coefficients, denoise the 
data, and reduce the data dimension of discrete 
thermal flow fields from the training simulation. 
POD modes can be obtained by either the 
eigenvalue decomposition (EVD) or singular value 
decomposition (SVD) method. In this work, SVD 
is implemented as shown in equation (1).  

 
𝑌𝑌 = 𝑈𝑈Σ𝑉𝑉Τ 

𝑈𝑈 = [𝑢𝑢1 ⋯𝑢𝑢𝑁𝑁] 
𝑉𝑉 = [𝑣𝑣1 ⋯𝑣𝑣𝑀𝑀] 

(1) 

Σ𝑖𝑖𝑖𝑖 = σ𝑖𝑖  
where 𝑌𝑌 ∈ ℝ𝑁𝑁×𝑀𝑀 is the snapshot matrix; 𝑈𝑈 ∈
ℝ𝑁𝑁×𝑁𝑁 and 𝑉𝑉 ∈ ℝ𝑀𝑀×𝑀𝑀 are orthogonal matrices; Σ ∈
ℝ𝑁𝑁×𝑀𝑀 is the matrix that has diagonal entries of 
singular values in a descending order and satisfies:  

 σ1 ≥ σ2 ≥ ⋯ ≥ σmin (𝑁𝑁,𝑀𝑀) ≥ 0. (2) 
Particularly in our work, N is equal to the size of 
CFD field (i.e., number of CFD cells) and M is 
equal to the number of train samples. By retaining 
the first k singular values and the corresponding U 
and V matrices, Y can be approximated as follows: 

 

𝑌𝑌 ≈ 𝑌𝑌� = 𝑈𝑈𝑟𝑟Σ𝑟𝑟𝑉𝑉𝑟𝑟Τ = ∑ σ𝑖𝑖𝑢𝑢𝑖𝑖𝑣𝑣𝑖𝑖Τ𝑘𝑘
𝑖𝑖=1   

𝑈𝑈𝑟𝑟 = [𝑢𝑢1 ⋯𝑢𝑢𝑘𝑘] 
Σ𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎1 ⋯𝜎𝜎𝑘𝑘) 
𝑉𝑉𝑟𝑟 = [𝑣𝑣1 ⋯𝑣𝑣𝑘𝑘] 

𝑘𝑘 < 𝑀𝑀  

(3) 

where k represents the dimension of the reduced 
domain. The matrix of modal coefficients A, is 
defined by: 

 𝐴𝐴 ∈ ℝ𝑘𝑘×𝑀𝑀 = Σ𝑟𝑟𝑉𝑉𝑟𝑟Τ = [𝛼𝛼1 ⋯𝛼𝛼𝑀𝑀]  (4) 
The matrix A is used as the target for ANN training 
instead of Y. Eq. (3) can also be used to reconstruct 
the CFD solution using the predicted modal 
coefficients. The reduced POD modes can be 
quantified by the ratio defined as:  

 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ 𝜎𝜎𝑖𝑖
2𝑘𝑘

𝑖𝑖=1
∑ 𝜎𝜎𝑖𝑖

2𝑟𝑟
𝑖𝑖=1

. (5) 

where EPOD is the relative energy captured by the 
first k POD basis. k is selected as the minimum 
integer that satisfies the following inequality: 

 1 − 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝜀𝜀. 
0 < 𝜀𝜀 < 1 (6) 

For this work ε ranges between 1e-4 and 1e-6.  
 
2.2. Artificial Neural Network 

ANN is a ML technique that uses interconnected 
nodes (often denoted as neurons) from multiple 
layers to identify the system, purely based on the 
data. It has emerged as an effective and popular tool 
in identifying complex and nonlinear systems [17]. 
Various ANN-based system modeling applications 
can be found in the following literatures 
[18],[19],[20].  
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Figure 2: ANN architecture 
 
The structure of the ANN model implemented in 

the present study is exhibited in Figure 2. There are 
two hidden layers and one output layer assigned to 
the network. In the figure, xi and αi represent 
boundary conditions (simulation parameters) and 
modal coefficients of CFD simulation, 
respectively. Subscript i denotes the sample 
number. Importantly, a separate ANN model is 
constructed and trained for each of the modal 
coefficient in the reduced domain. In other words, 
instead of building one multi-output model, which 
outputs all the components of αi, multiple single-
output models are trained, each predicting only one 
component of αi. All ANN models share the same 
structure consisting of 6 hidden neurons for both 
hidden layers and hyperbolic tangent activation 
function.  

The ANN model can be mathematically expressed 
as 

 𝛼𝛼𝑖𝑖
(𝑗𝑗) = 𝑊𝑊3𝑡𝑡𝑑𝑑𝑡𝑡ℎ(𝑊𝑊2𝑡𝑡𝑑𝑑𝑡𝑡ℎ(𝑊𝑊1𝑥𝑥𝑖𝑖 +

𝑏𝑏1) + 𝑏𝑏2) + 𝑏𝑏3, 
(7) 

where (W1,W2,W3) and (b1,b2,b3) are the weight 
parameters of the model; and j denotes the index of 
the modal coefficient targeted for prediction. The 
Levenberg-Marquardt optimization algorithm and 
mean squared error loss function are used in the 
training process. The maximum epoch for training 
process is set to be 500, and to prevent from 
overfitting, the training is halted when the 
validation error stops decreasing for 8 consecutive 
epochs. Due to the random initialization of the 
network weights, the entire training processes for 
all ANN models are repeated 5 times and the model 
with the highest test accuracy is selected for 
prediction/inference. Likewise, 600 and 150 data 
points are used for training and testing, 
respectively. Among the training set, 90% is used 
for training and 10% for validation.  
 
3. CASE STUDIES 

For demonstrating our computational tool, a 2-
dimensional (2D) mock-up vehicle geometry is 
considered, which contains two domains: the solid 
vehicle (in gray) and the fluid flow domain (in 
blank but within the bounding box) as shown in 
Figure 3a. The far field is a rectangular shape with 
a length of 20 m and a height of 10 m. The specific 
dimensions of the vehicle are shown in Figure 3b. 
The square region of the size (0.5×0.5 m) within the 
vehicle represents the engine box. Equivalent CFD 
model is constructed to perform the thermal and 
flow simulation. Given the geometry, a 2D 
computational domain is developed. The mesh is 

  
(a) (b) 

Figure 3: Geometry of CFD simulation: (a) entire field, and (b) vehicle dimensions 
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constructed as an unstructured grid and made up of 
fluid and solid regions with 8,988 and 1,877 cells, 
respectively. A fine grid is applied at the boundary 
of the ground and the vehicle.  

Three CFD boundary conditions: wind velocity, 
engine temperature, and ambient air temperature 
are selected as simulation parameters for this study; 
and their ranges are chosen as, 1-15 m/s, 350-800 
K, and 273-323 K, respectively. The Latin 
hypercube sampling (LHS) method is employed to 
generate a large number of near-random samples 
that represent various combinations of the 
simulation parameters. As indicated in Section 2.3, 
two sets of LHS are generated for model training 
and verification/testing, and their sample sizes are, 
respectively, 600 and 150. In total 750 coupled 
CFD and conjugate heat transfer simulation (with 
different thermal and flow boundary conditions) are 
carried out, aiming to capture the effects of the 
simulation parameters on thermal and flow field 
variations within and around a vehicle. 

In this work, OpenFOAM is employed to generate 
the simulation data. It is the free and open source 
CFD software and includes flow analysis solvers 
for various simulation scenarios, such as transient 
and steady state, compressible and incompressible, 
buoyancy, heat transfer, laminar and turbulent, and  
others. The advantage of OpenFOAM is its 
potential for fast running, automated simulations if 

a user develops a Linux script, such as Shell, Bash, 
TCL, and others. The combination of the script-
based method and the high-performance computing  
(HPC) is applied to run multiple CFD simulations 
simultaneously, generating a library of CFD data 
for ML model training. The HPC node used in this 
research is Intel(R) Xeon(R) Platinum 8260 
Processors @ 2.4 GHz with 192 GB of RAM and 
48 cores. In this study, 2 nodes (96 cores) are 
utilized. 

Conjugate heat transfer CFD simulations 
involving both thermal and flow are performed to 
observe the thermal field of the vehicle and its 
vicinity. The thermal solution is present in both the 
fluid and solid domains. Conversely, flow solution 
is only available in the flow domain. Through CFD, 
fluid velocity is computed in two orthogonal 
directions: horizontal and vertical, such that the 
sum of these two velocity vectors indicate the 
resultant flow velocity and direction. In summary, 
CFD solutions computed for given boundary 
conditions are divided into four groups: fluid 
temperature, solid temperature, horizontal velocity, 
and vertical velocity. POD is performed for each of 
the solution groups and the number of modal 
coefficients used is listed in  

Table 1. It is observed that for this particular 
problem, thermal data can be compressed more 
than the fluid data while preserving the similar 

  
(a) (b) 

Figure 4: CFD field prediction errors: (a) temperature and (b) magnitude of the flow velocity 
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relative energy ratio. In total, 21 and 110 modal 
coefficients must be predicted to reconstruct 
thermal and flow solutions, respectively. 
Consequently, 131 different ANN models are 
trained.  

 
Table 1: Number of modal coefficients identified for each 
CFD solution 

 number of modal 
coefficients 

thermal 

fluid 
temperature 13 

solid 
temperature 8 

flow 

horizontal 
velocity 62 

vertical 
velocity 48 

 
4. RESULTS WITH DISCUSSION 

The mean absolute error (MAE) and mean 
relative error (MRE) of ML-based thermal and flow 
CFD field predictions are illustrated in Figure 4. All 
150 test samples generated at different conditions 
are evaluated. The maximum mean absolute error 
(MAE) of the thermal signature prediction is found 
to be 0.41 K. This indicates that the average 
temperature error of the entire domain is less than 
or equal to 0.41 K, verifying the accuracy of the 
prediction. Since the temperature range varies 
based on the boundary conditions, it is equally 
important to check the mean relative errors 
(MREs). It is clear from Figure 4a that all MREs at 
different evaluation sites are strictly less than 
0.0012%, indicating salient accuracy of the thermal 
prediction. Likewise, as seen from Figure 4b, the 
maximum MAE and MRE of the flow field 
prediction is 0.019 m/s and 0.067%, respectively, 
again indicating excellent accuracy of the proposed 
ML method. Furthermore, the average MAEs for 
all evaluation sites are only 0.11 K and 0.0024 m/s. 
It is important to note that the large difference exist 
between the average and the maximum errors. It 
has been confirmed that the sharp errors exist near 
the boundaries of the parameter space, where the 
number of training samples is appreciably smaller.  

For more elaborate analysis of ML-based 
predictions, temperature and velocity contour plots 
are generated for two distinct evaluation sites: the 
10th and the 150th. The boundary conditions of the 
two evaluation sites are presented in Table 2. The 
sample from evaluation site No. 10 exhibits large 
temperature difference between the engine and the 
ambient air, but low fluid velocity. On the other 
hand, the sample from evaluation site No. 150 
possesses high fluid velocity but small temperature 
difference. The MAEs at 10 and 150 evaluations 
sites are computed to be 0.24 K and 0.07 K, 
respectively, for the temperature field, and 0.0018 
m/s and 0.0041 m/s, respectively, for the velocity 
field.  

 
Table 2: Boundary conditions of evaluation sites: 10 and 150 

evaluation site 10 150 
flow velocity 2.32 m/s 14.12 m/s 

engine temperature 781.28 K 326.28 K 
ambient air temperature 300.05 K 307.30 K 
 

The true and predicted thermal and flow CFD 
contours at evaluation sites No. 10 and No. 150 are 
depicted in Figure 5 and Figure 6, respectively. For 
both figures, (a) and (b) display thermal and flow 
field solutions. In general, all contour plots exhibit 
extremely accurate predictions over the entire 
domain, and the difference between the true and 
predicted plots cannot be observed visually and 
without specifically extracting the difference 
between the two. From the error plots, it can be seen 
that most of the errors are close to zero for the entire 
domain. However, relatively larger errors exist near 
the boundaries of the vehicle. For the thermal 
predictions, since two different domains are 
comprised of different materials with disparate 
temperatures, the prediction becomes difficult at 
the boundary. Flow predictions also experience 
larger errors near the vehicle boundaries due to 
more complicated flow motions near the solid 
surfaces that are difficult to capture. The largest 
absolute errors for the temperature contours at 
evaluation sites No. 10 and No. 150 are less than 7 
K and 2 K, respectively. Similarly, the largest  
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absolute errors for both velocity contours are less 
than 0.08 m/s. The contour plots further confirm the 
outstanding performance of the proposed ML 
model. 
 
5. CONCLUSION 

A ML method to predict the thermal and flow 
simulation is presented in this work. For 
demonstration, the computational framework is 
applied to the 2D mock-up vehicle geometry to 
observe the thermal and flow behaviors around and 
within the vehicle. The CFD simulation using the 
OpenFOAM software is utilized to generate the 
training data. The unstructured mesh is constructed 
in both fluid and solid regions. Due to a large 
number of computational cells generated to cover 
the entire simulation domain, POD method is 
applied to reduce the data dimension. For the 

thermal field, the total of 10,865 cells are 
compressed to 21 modal coefficients. Similarly, the 
data dimension for the flow field is reduced from 
8,988 to 110. The ANN models are trained to 
predict the modal coefficients instead of the cell 
values in the full domain. This data reduction 
allowed ANN models to learn the relation between 
the CFD simulation parameters and the modal 
coefficients in the reduced domain even with only 
600 train samples. Moreover, each ANN model is 
trained to predict a single modal coefficient to 
further increase the accuracy of the prediction. 

The ANN predictions on all 150 test samples are 
completed within 1 second by the heterogeneous 
computing framework developed in this work, 
whereas the OpenFOAM software takes 
approximately 500 seconds for a single CFD 
simulation by a single CPU core.  

  

  

  
(a) (b) 

Figure 5: CFD contours at evaluation site 10: (a) temperature and (b) flow velocity 
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 The predictions based on the proposed ML 
method showed excellent performance for all the 
query samples. The maximum MAEs for thermal 
and flow field predictions are computed to be 0.41 
K and 0.019 m/s, corresponding to less than 0.1% 
relative error. In other words, the trained ANN  
models are able to predict the modal coefficients of 
the CFD solution data accurately, and also verifies 
that the POD method can be used effectively to 
represent the CFD data of the high dimension while 
preserving the information. For further analysis, 
temperature and velocity contour plots predicted by 
the CFD and the ANN models at two distinct 
sample locations are compared. All predicted 
contours resemble the true CFD solutions, and their 
difference is almost visually indistinguishable. 
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Figure 6: CFD contours at evaluation site 150: (a) temperature and (b) flow velocity 
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